Post M.Sc Diploma in Radiological Physics Regular/Supplementary Examinations October 2021

Radiation Dosimetry and Standardisation

Time: 3 hours

- Answer all questions to the point neatly and legibly Do not leave any blank pages between answers
 Indicate the question number correctly for the answer in the margin space
- Answer all parts of a single question together Leave sufficient space between answers
- Use of Calculators/physical and mathematical tables permitted.

Essays

1. • Describe in detail about the measurement of absorbed dose to water for high energy photon beams using TRS 398 protocol

• Find the absorbed dose to water at d_{max} for high energy photon beam if the meter reading for 200MU at 10cm depth is 27.22 nC, N_{DW} = 4.836 x 10⁷ Gy/C, K_Q = 0.9957, T= 21°C, P= 1007mbar, M₊ = 28.26nC, M- = 28.3nC, M1 (for 300V) = 28.26nC, M2 (for 100V) = 28.05nC, PDD_{10cm} = 66.07 (Given a₀= 1.198, a₁= -0.1875, a₂=0.677) (9+5)

2. • Explain Burlin and Spencer – Attix cavity theory. Discuss its merit and demerits over Bragg-Gray cavity theory

• Alpha source of 100Bq activity with 6 MeV energy is kept inside the gas filled detector. If all particles completely absorb their energy inside the detector, calculate the average current form each detector (Given W/e= 33.3eV and e = $1.6 \times 10-19 \text{ C}$) (9+5)

Short Essays

- 3. Describe Fricke dosimeter and its application in radiotherapy
- 4. Describe in detail about the classification of neutron sources and dosimetry procedures
- 5. Describe the standardisation of beta emitters with proportional, GM and scintillation counters
- 6. Explain the steps involved in the cross calibration of therapy dosimeters

Short Notes

- 7. Radiation chemical yield
- 8. Relation between absorbed dose and kerma
- 9. Natural and artificial radioactive sources
- 10. Preparation of tracers and labelled compounds
- 11. Properties of I-125 source\
- 12. Neutron field around medical accelerator
- 13. Dead time correction in a counting system
- 14. Radiation polymerisation
- 15. FBX dosimeter
- 16. Air Kerma Strength

(4x8=32)

(10x4=40)

Max. Marks: 100

(2x14=28)