QP Code:129380 (New Scheme) Reg. No.:......

First Year MHA Degree Supplementary Examinations, February 2016

OPERATIONS RESEARCH (2013 Scheme)

Time: 3 Hours Max Marks: 100

Answer all the questions

• Ordinary calculator can be used

Essays: (2x20=40)

1. "Develop a replacement policy for a 3 years old ventilator over the next 4 years, hospital requires that a 6 years old machine be replaced, the cost of a new machine is \$ 10,00,000".

Age (yrs)	Revenue (Rs)	Operating cost (Rs)	Salvage Value
0	20,000	200	-
1	19,000	600	80,000
2	18,500	1200	60,000
3	17,200	1500	50,000
4	15,500	1700	30,000
5	14,000	1800	10,000
6	12,200	2200	5000

2. A manufactures 3 product A,B & C. the profits are Rs. 3, Rs. 2 & Rs. 4 respectively the firm has two machines and given below is the required processing time in minutes for each machine for each product.

Product	Α	В	С
Machine G	3	3	5
Machine H	4	2	4

Machine G & \overline{H} have 2,000 & 2,500 machine minutes respectively. The firm must manufacture 100 A's, 200 B's & 50 C's but not more than 150 A's set up an Lp problem to maximize profit.

Short Essays: (2x10=20)

3. Discuss balanced and unbalanced transportation problem. Solve the following transportation problem. Find the initial basic feasible solution by using Voguls solution

		То			Cupply
		D	E	F	Supply
	Α	6	8	1	50
From	В	3	8	7	40
	С	4	4	2	60
Den	nand	20	95	35	150

4. Vehicles arrive at a gas filling station at the rate of 3 per hour. The inter-arrival time being distributed as negative exponential. There is one server who attends to the filling of the gas & billing & collecting. The service time is distributed as negative exponential with mean 10 minutes. At a time there is waiting space for only three vehicles and a vehicle that arrives and finds no waiting space drives away and is lost to the system. Find the following:

Average time spent by a vehicle in the gas filling station. The proportion of vehicles which are lost to the system.

Short notes: (8x5=40)

- 5. Explain different phases in operation research.
- 6. Scope of network analysis in hospital.
- 7. Basic properties of LP model.
- 8. Elements of queuing model.
- 9. Lead time.
- 10. "Monte".l.
- 11. Classic EOQ model.
- 12. How to determine the critical path.
