KERALA UNIVERSITY OF HEALTH SCIENCES Thrissur - 680596

SYLLABUS

POST GRADUATE COURSE IN PHARMACY Master of Pharmacy (M.Pharm.)

PHARMACEUTICAL CHEMISTRY	MPC
KUHS Course Code	277

(2019-20 Academic year onwards)

2019

Course of study for M.Pharm. I & II Semester

MPC	Pharmaceutical Chemistry						
Course Code	Course	Credit Hours	Credit Points	Hrs./wk	Marks		
Semester I							
MPT 101T	Modern Pharmaceutical Analytical Techniques	4	4	4	100		
MPC 102T	Advanced Organic Chemistry –I	4	4	4	100		
MPC 103T	Advanced Medicinal Chemistry	4	4	4	100		
MPC 104T	Chemistry of Natural Products	4	4	4	100		
MPC 105P	Pharmaceutical Chemistry Practical – I	12	6	12	150		
-	Seminar/Assignment	7	4	7	100		
	Total	35	26	35	650		
Semester II							
MPC 201T	Advanced Spectral Analysis	4	4	4	100		
MPC 202T	Advanced Organic Chemistry –II	4	4	4	100		
MPC 203T	Computer Aided Drug Design	4	4	4	100		
MPC 204T	Pharmaceutical Process Chemistry	4	4	4	100		
MPC 205P	Pharmaceutical Chemistry Practical II	12	6	12	150		
-	Seminar /Assignment	7	4	7	100		
	Total	35	26	35	650		

Course of study for M. Pharm. III & IV Semester

Course Code	Course	Credit Hours	Credit Points	Marks		
Semester III						
MRM 301T	Research Methodology and Biostatistics	4	4	100		
-	Journal Club	1	1	25		
-	Discussion / Presentation (proposal presentation)	2	2	25		
-	Research Work	28	14	350		
Total			21	500		
Semester IV						
-	Journal Club	1	1	25		
-	Pre submission Discussion / Presentation	3	3	75		
-	Research Work	31	16	400		
	Total	35	20	500		

PHARMACEUTICAL CHEMISTRY (MPC)

MODERN PHARMACEUTICAL ANALYTICAL TECHNIQUES (MPT 101T) SCOPE

This subject deals with various advanced analytical instrumental techniques for identification, characterization and quantification of drugs. Instruments dealt are NMR, Mass spectrometer, IR, HPLC, GC etc.

OBJECTIVES

Upon completion of the course, student will be able to know about

- Chemicals and excipients
- The analysis of various drugs in single and combination dosage forms
- Theoretical and practical skills for handling of the instruments

THEORY

60 Hrs

- 1. a. UV-Visible spectroscopy: Introduction, Theory, Laws, Instrumentation associated with UV-Visible spectroscopy, Choice of solvents and Solvent effect and Applications of UV-Visible spectroscopy, Difference/ Derivative spectroscopy.
- b. IR spectroscopy: Theory, Modes of Molecular vibrations, Sample handling, Instrumentation of Dispersive and Fourier Transform IR Spectrometer, Factors affecting vibrational frequencies and Applications of IR spectroscopy, Data Interpretation.
- c. Spectroflourimetry: Theory of Fluorescence, Factors affecting fluorescence (Characteristics of drugs that can be analysed by flourimetry), Quenchers, Instrumentation and Applications of fluorescence spectrophotometer.
- d. Flame emission spectroscopy and Atomic absorption spectroscopy: Principle, Instrumentation, Interferences and Applications.
- 2. NMR spectroscopy: Principle, Instrumentation,
 Solvent requirement in NMR, Relaxation process, NMR signals in various compounds,
 Chemical shift, Factors influencing chemical shift, Spin-Spin coupling, Coupling constant,
 Nuclear magnetic double resonance, Brief outline of principles of FT-NMR and ¹³C NMR,
 Applications of NMR spectroscopy.
- 3. Mass Spectroscopy: Principle, Theory, Instrumentation of Mass Spectroscopy,

 9 Hrs
 Different types of ionization like electron impact, chemical, field, FAB and MALDI, APCI, ESI,
 APPI Analyzers of Quadrupole and Time of Flight, Mass fragmentation and its rules, Meta stable
 ions, Isotopic peaks and Applications of Mass spectroscopy.
- 4. Chromatography: Principle, apparatus, instrumentation, 9 Hrs chromatographic parameters, factors affecting resolution, isolation of drug from excipients, data interpretation and applications of the following:
 - a) Thin Layer chromatography
 - b) High Performance Thin Layer Chromatography
 - c) Ion exchange chromatography
 - d) Column chromatography
 - e) Gas chromatography
 - f) High Performance Liquid chromatography
 - g) Ultra High Performance Liquid chromatography
 - h) Affinity chromatography
 - i) Gel Chromatography

5. a. Electrophoresis: Principle, Instrumentation, Working conditions, factors affecting separation and applications of the following:

- 9 Hrs
- i) Paper electrophoresis ii) Gel electrophoresis iii) Capillary electrophoresis iv) Zone electrophoresis v) Moving boundary electrophoresis vi) Iso electric focusing
- b. X ray Crystallography: Production of X rays, Different X ray methods, Bragg's law, Rotating crystal technique, X ray powder technique, Types of crystals and applications of X-ray diffraction.
- 6. a. Potentiometry: Principle, working, Ion selective Electrodes and Application of potentiometry.

 9 Hrs
- b.Thermal Techniques: i) Differential scanning calorimetry (DSC): Principle, thermal transitions and Instrumentation (Heat flux and power-compensation and designs), Modulated DSC, Hyper DSC, experimental parameters (sample preparation, experimental conditions, calibration, heating and cooling rates, resolution, source of errors and their influence), advantages, disadvantages and pharmaceutical applications.
- ii) Differential Thermal Analysis (DTA): Principle, instrumentation and advantage and disadvantages, pharmaceutical applications, derivative differential thermal analysis (DDTA).
- iii) Thermo Gravimetric Analysis (TGA): Principle, instrumentation, factors affecting results, advantage and disadvantages, pharmaceutical applications.
- 7. Immunological assays: RIA (Radio immuno assay), ELISA, Bioluminescence assays. **4 Hrs REFERENCES**
- 1. Spectrometric Identification of Organic compounds Robert M Silverstein, 6th Edition, John Wiley & Sons, 2004.
- 2. Principles of Instrumental Analysis Douglas A Skoog, F. James Holler, Timothy A. Nieman, 5th Edition, Eastern Press, Bangalore, 1998.
- 3. Instrumental Methods of Analysis Willards, 7th Edition, CBS publishers.
- 4. Practical Pharmaceutical Chemistry Beckett and Stenlake, Vol II, 4th Edition, CBS Publishers, New Delhi, 1997.
- 5. Organic Spectroscopy William Kemp, 3rd Edition, ELBS, 1991.
- 6. Quantitative Analysis of Drugs in Pharmaceutical formulation P.D. Sethi, 3rd Edition, CBS Publishers, New Delhi, 1997.
- 7. Pharmaceutical Analysis-Modern Methods-Part B-J.W. Munson, Vol 11, Marcel Dekker Series.
- 8. Spectroscopy of Organic Compounds, 2nd Edition, P.S. Kalsi, Wiley Eastern Ltd, Delhi.
- 9. Textbook of Pharmaceutical Analysis, K.A. Connors, 3rd Edition, John Wiley & Sons, 1982.

ADVANCED ORGANIC CHEMISTRY - I (MPC 102T)

Scope

The subject is designed to provide in-depth knowledge about advances in organic chemistry, different techniques of organic synthesis and their applications to process chemistry as well as drug discovery.

Objectives

Upon completion of course, the student shall be to understand

- The principles and applications of reterosynthesis
- The mechanism and applications of various named reactions

- The concept of disconnection to develop synthetic routes for small target molecule.
- The various catalysts used in organic reactions
- The chemistry of heterocyclic compounds

THEORY
1. Basic Aspects of Organic Chemistry:
12Hrs

- a) Reactive intermediates: Carbocations, carbanions, free radicals, carbenes and nitrenes. Their method of formation, stability and synthetic applications. b) Types of reaction mechanisms and methods of determining them, Detailed knowledge regarding the reactions, mechanisms and their relative reactivity and orientations.
 - i) Addition reactions
 - ii) Nucleophilic uni- and bimolecular reactions (S_N1 and S_N2)
 - iii) Elimination reactions (E1 & E2; Hoffman & Saytzeff's rule)
 - iv) Rearrangement reactions.

2. Study of mechanism and synthetic applications of following named Reactions:

Ugi reaction, Brook rearrangement, Ullmann coupling reactions, Dieckmann Reaction, Doebner-Miller Reaction, Sandmeyer Reaction, Mitsunobu reaction, Mannich reaction, Vilsmeyer-Haack Reaction, Sharpless asymmetric epoxidation, Baeyer-Villiger oxidation, Shapiro & Suzuki reaction, Ozonolysis and Michael addition reaction.

3. Synthetic Reagents & Applications:

12 Hrs

Aluminiumisopropoxide, N-bromosuccinimide, diazomethane, dicyclohexylcarbodiimide, Wilkinson reagent, Witting reagent. Osmium tetroxide, titanium chloride, diazopropane, diethyl azodicarboxylate, Triphenylphosphine, Benzotriazol-1-yloxy tris (dimethylamino) phosphonium hexafluoro-phosphate (BOP).

Protecting groups

- a) Role of protection in organic synthesis
- b) Protection for the hydroxyl group, including 1,2-and1,3-diols: ethers, esters, carbonates, cyclic acetals & ketals
- c) Protection for the Carbonyl Group: Acetals and Ketals
- d) Protection for the Carboxyl Group: amides and hydrazides, esters
- e) Protection for the Amino Group and Amino acids: carbamates and amides

4. Heterocyclic Chemistry:

12

Hrs

Organic Name reactions with their respective mechanism and application involved in synthesis of drugs containing five, six membered and fused hetrocyclics such as Debus-Radziszewski imidazole synthesis, Knorr Pyrazole Synthesis, Pinner Pyrimidine Synthesis, Combes Quinoline Synthesis, Bernthsen Acridine Synthesis, Smiles rearrangement and Traube purine synthesis.

Synthesis of a few representative drugs containing these hetrocyclic nucleus such as Ketoconazole, Metronidazole, Miconazole, Celecoxib, Antipyrin, Metamizole sodium, Terconazole, Alprazolam, Triamterene, Sulfamerazine, Trimethoprim, Hydroxychloroquine,

Quinine, Chloroquine, Quinacrine, Amsacrine, Prochlorperazine, Promazine, Chlorpromazine, Theophylline, Mercaptopurine and Thioguanine.

5. Synthon approach and retrosynthesis applications

12

Hrs

- i. Basic principles, terminologies and advantages of retrosynthesis; guidelines for dissection of molecules. Functional group interconvertion and addition (FGI and FGA).
- ii. C-X disconnections; C-C disconnections alcohols and carbonyl compounds; 1,2-,

1,3-,1,4-, 1,5-,1,6-difunctionalized compounds

iii. Strategies for synthesis of three, four, five and six-membered ring.

REFERENCES

- 1. "Advanced Organic chemistry, Reaction, Mechanisms and Structure", J March, John Wiley and Sons, New York.
- 2. "Mechanism and Structure in Organic Chemistry", ES Gould, Hold Rinchart and Winston, New York.
- 3. "Organic Chemistry" Clayden, Greeves, Warren and Woihers., Oxford University Press 2001. 4. "Organic Chemistry" Vol I and II. I.L. Finar. ELBS, Pearson Education Lts, Dorling Kindersley 9India) Pvt. Ltd.,.
- 4. A guide to mechanisms in Organic Chemistry, Peter Skyes (Orient Longman, New Delhi).
- 5. Reactive Intermediates in Organic Chemistry, Tandom and Gowel, Oxford & IBH Publishers.
- 6. Combinational Chemistry Synthesis and applications Stephen R Wilson & Anthony W Czarnik, Wiley Blackwell.
- 7. Carey, Organic Chemistry, 5th Edition (Viva Books Pvt. Ltd.)
- 8. Organic Synthesis The Disconnection Approach, S. Warren, Wily India
- 9. Principles of Organic Synthesis, ROC Norman and JM Coxan, Nelson Thorns.
- 10. Organic Synthesis Special Techniques. VK Ahluwalia and R Agarwal, Narosa Publishers.
- 11. Organic Reaction Mechanisms IV Edtn, VK Ahluwalia and RK Parashar, Narosa Publishers.

ADVANCED MEDICINAL CHEMISTRY (MPC 103T)

Scope

The subject is designed to impart knowledge about recent advances in the field of medicinal chemistry at the molecular level including different techniques for the rational drug design.

Objectives

At completion of this course it is expected that students will be able to understand

- Different stages of drug discovery
- Role of medicinal chemistry in drug research
- Different techniques for drug discovery
- Various strategies to design and develop new drug like molecules for biological targets
- Peptidomimetics

THEORY 60

Hrs

1. Drug discovery: 12 Hrs

Stages of drug discovery, lead discovery; identification, validation and diversity of drug targets. Biological drug targets: Receptors, types, binding and activation, theories of drug receptor interaction, drug receptor interactions, agonists vs antagonists, artificial enzymes.

2. Prodrug Design and Analog design:

12 Hrs

- i. Prodrug design: Basic concept, Carrier linked prodrugs / Bioprecursors, Prodrugs of functional group, Prodrugs to improve patient acceptability, Drug solubility, Drug absorption and distribution, site specific drug delivery and sustained drug action. Rationale of prodrug design and practical consideration of prodrug design.
- ii. Combating drug resistance: Causes for drug resistance, strategies to combat drug resistance in antibiotics and anticancer therapy, Genetic principles of drug resistance.
- iii. Analog Design: Introduction, Classical & Non classical, Bioisosteric replacement strategies, rigid analogs, alteration of chain branching, changes in ring size, ring position isomers, design of stereo isomers and geometric isomers, fragments of a lead molecule, variation in inter atomic distance.

3. Medicinal chemistry aspects of the following class of drugs:

12 Hrs

Systematic study, SAR, Mechanism of action and synthesis of new generation molecules of following class of drugs:

- i. Anti-hypertensive drugs, Psychoactive drugs, Anticonvulsant drugs, H1 & H2 receptor antagonist, COX1 & COX2 inhibitors, Adrenergic & Cholinergic agents, Antineoplastic and Antiviral agents.
- ii. Stereochemistry and Drug action: Realization that stereo selectivity is a pre-requisite for evolution. Role of chirality in selective and specific therapeutic agents. Case studies, Enantio selectivity in drug adsorption, metabolism, distribution and elimination.

4. Rational Design of Enzyme Inhibitors

12 Hrs

Enzyme kinetics & Principles of Enzyme inhibitors, Enzyme inhibitors in medicine, Enzyme inhibitors in basic research, rational design of non-covalently and covalently binding enzyme inhibitors.

5. Peptidomimetics 12 Hrs

Therapeutic values of Peptidomimetics, Design of peptidomimetics by manipulation of the amino acids, Modification of the peptide backbone, Incorporating conformational constraints locally or globally. Chemistry of prostaglandins, leukotrienes and thromboxanes.

REFERENCES

- 1. Medicinal Chemistry by Burger, Vol I –VI.
- 2. Wilson and Gisvold's Text book of Organic Medicinal and Pharmaceutical Chemistry, 12th Edition, Lppincott Williams & Wilkins, Woltess Kluwer (India) Pvt.Ltd, New Delhi.
- 3. Comprehensive Medicinal Chemistry Corwin and Hansch.
- 4. Computational and structural approaches to drug design edited by Robert M Stroud and Janet. F Moore
- 5. Introduction to Quantitative Drug Design by Y.C. Martin.
- 6. Principles of Medicinal Chemistry by William Foye, 7th Edition, Lippincott Williams & Wilkins, Woltess Kluwer (India) Pvt.Ltd, New Delhi.
- 7. Drug Design Volumes by Arienes, Academic Press, Elsevier Publishers, Noida, Uttar Pradesh
- 8. Principles of Drug Design by Smith.
- 9. The Organic Chemistry of the Drug Design and Drug action by Richard B.Silverman, II Edition, Elsevier Publishers, New Delhi.
- 10. An Introduction to Medicinal Chemistry, Graham L.Patrick, III Edition, Oxford University Press, USA.
- 11. Biopharmaceutics and pharmacokinetics, DM.Brahmankar, Sunil B. Jaiswal II Edition, 2014, Vallabh Prakashan, New Delhi.
- **12**. Peptidomimetics in Organic and Medicinal Chemistry by Antonio Guarna and Andrea Trabocchi, First edition, Wiley publishers.

CHEMISTRY OF NATURAL PRODUCTS (MPC 104T)

Scope

The subject is designed to provide detail knowledge about chemistry of medicinal compounds from natural origin and general methods of structural elucidation of such compounds. It also emphasizes on isolation, purification and characterization of medicinal compounds from natural origin.

Objectives

At completion of this course it is expected that students will be able to understand-

- Different types of natural compounds and their chemistry and medicinal importance
- The importance of natural compounds as lead molecules for new drug discovery
- The concept of rDNA technology tool for new drug discovery
- General methods of structural elucidation of compounds of natural origin
- Isolation, purification and characterization of simple chemical constituents from natural source

THEORY 60 Hrs

1. Study of Natural products as leads for new pharmaceuticals for the following class of drugs

12 Hrs

- a) Drugs Affecting the Central Nervous System: Morphine Alkaloids
- b) Anticancer Drugs: Paclitaxel and Docetaxel, Etoposide, and Teniposide
- c) Cardiovascular Drugs: Lovastatin, Teprotide and Dicoumarol
- d) Neuromuscular Blocking Drugs: Curare alkaloids
- e) Anti-malarial drugs and Analogues
- f) Chemistry of Macrolide antibiotics: (Erythromycin, Azithromycin, Roxithromycin, and Clarithromycin) and β Lactam antibiotics (Cephalosporins and Carbapenem)

2. a) Alkaloids 12 Hrs

General introduction, Classification, Isolation, Purification, Molecular modification and Biological activity of Alkaloids, General methods of Structural determination of alkaloids, structural elucidation and stereochemistry of ephedrine, morphine, ergot, emetine and reserpine.

b) Flavonoids

Introduction, isolation and purification of flavonoids, General methods of structural determination of flavonoids; Structural elucidation of quercetin.

c) Steroids

General introduction, chemistry of sterols, sapogenin and cardiac glycosides. Stereochemistry and nomenclature of steroids, Chemistry of contraceptive agents, male & female sex hormones (Testosterone, Estradiol, Progesterone), adrenocorticoids (Cortisone), contraceptive agents and steroids (Vit - D).

3. a) Terpenoids 12 Hrs

Classification, isolation, Isoprene rule and General methods of structural elucidation of Terpenoids; Structural elucidation of drugs belonging to mono terpenoids (citral, menthol, camphor), di terpenoids (retinol, Phytol, taxol) and tri terpenoids (Squalene, Ginsenoside) carotinoids (\$\beta\$ carotene).

b) Vitamins

Chemistry and Physiological significance of Vitamin A, B1, B2, B12, C, E, Folic acid and Niacin.

4. a). Recombinant DNA technology and drug discovery

12 Hrs

rDNA technology, hybridoma technology, New pharmaceuticals derived from biotechnology; Oligonucleotide therapy. Gene therapy: Introduction, Clinical application and recent advances in gene therapy, principles of RNA & DNA estimation

b). Active constituent of certain crude drugs used in Indigenous system Diabetic therapy – Gymnema sylvestre, Salacia reticulate, Pterocarpus marsupiam, Swertia chirata, Trigonella foenum graccum; Liver dysfunction – Phyllanthus niruri; Antitumor – Curcuma longa Linn.

5. Structural Characterization of natural compounds 12 Hrs

Structural characterization of natural compounds using IR, ¹HNMR, ¹³CNMR and MS Spectroscopy and of specific drugs e.g., Penicillin, Morphine, Camphor, Vit-D, Quercetin and Digitalis glycosides.

REFERENCES

- 1. Modern Methods of Plant Analysis, Peech and M.V.Tracey, Springer Verlag, Berlin, Heidelberg.
- 2. Phytochemistry Vol. I and II by Miller, Jan Nostrant Rein Hld.
- 3. Recent advances in Phytochemistry Vol. I to IV Scikel Runeckles, Springer Science & Business Media.
- 4. Chemistry of natural products Vol I onwards IWPAC.
- 5. Natural Product Chemistry Nakanishi Gggolo, University Science Books, California.
- 6. Natural Product Chemistry "A laboratory guide" Rapheal Khan.
- 7. The Alkaloid Chemistry and Physiology by RHF Manske, Academic Press.
- 8. Introduction to molecular Phytochemistry CHJ Wells, Chapmannstall.
- 9. Organic Chemistry of Natural Products Vol I and II by Gurdeep and Chatwall, Himalaya Publishing House.
- 10. Organic Chemistry of Natural Products Vol I and II by O.P. Agarwal, Krishan Prakashan.
- 11. Organic Chemistry Vol I and II by I.L. Finar, Pearson education.
- 12. Elements of Biotechnology by P.K. Gupta, Rastogi Publishers.
- 13. Pharmaceutical Biotechnology by S.P.Vyas and V.K.Dixit, CBS Publishers.
- 14. Biotechnology by Purohit and Mathur, Agro-Bios, 13th edition.
- 15. Phytochemical methods of Harborne, Springer, Netherlands.
- 16. Burger's Medicinal Chemistry.

PHARMACEUTICAL CHEMISTRY PRACTICAL - I (MPC 105P)

- 1. Analysis of Pharmacopoeial compounds and their formulations by UV Vis spectrophotometer, RNA & DNA estimation
- 2. Simultaneous estimation of multi component containing formulations by UV spectrophotometry
- 3. Experiments based on Column chromatography
- 4. Experiments based on HPLC
- 5. Experiments based on Gas Chromatography
- 6. Estimation of riboflavin/quinine sulphate by fluorimetry
- 7. Estimation of sodium/potassium by flame photometry

To perform the following reactions of synthetic importance

- 1. Purification of organic solvents, column chromatography
- 2. Claisen-schimidt reaction.
- 3. Benzyllic acid rearrangement.
- 4. Beckmann rearrangement.
- 5. Hoffmann rearrangement
- 6. Mannich reaction
- 7. Synthesis of medicinally important compounds involving more than one step along with purification and Characterization using TLC, melting point and IR spectroscopy (4 experiments)
- 8. Estimation of elements and functional groups in organic natural compounds
- 9. Isolation, characterization like melting point, mixed melting point, molecular weight determination, functional group analysis, co-chromatographic technique for identification of isolated compounds and interpretation of UV and IR data.
- 10. Some typical degradation reactions to be carried on selected plant constituents

ADVANCED SPECTRAL ANALYSIS (MPC 201T)

Scope

This subject deals with various hyphenated analytical instrumental techniques for identification, characterization and quantification of drugs. Instruments dealt are LC-MS, GC-MS, ATR-IR, DSC etc.

Objectives

At completion of this course it is expected that students will be able to understand-

- Interpretation of the NMR, Mass and IR spectra of various organic compounds
- Theoretical and practical skills of the hyphenated instruments
- Identification of organic compounds

THEORY 60Hrs

1. UV and IR spectroscopy:

12 Hrs

Woodward-Fieser rule for 1,3- butadienes, cyclic dienes and α , β -carbonyl compounds and interpretation compounds of enones. ATR-IR, IR Interpretation of organic compounds.

2. NMR spectroscopy:

12 Hrs

1-D and 2-D NMR, NOESY and COSY, HETCOR, INADEQUATE techniques, Interpretation of organic compounds.

3. Mass Spectroscopy

12 Hrs

Mass fragmentation and its rules, Fragmentation of important functional groups like alcohols, amines, carbonyl groups and alkanes, Meta stable ions, Mc Lafferty rearrangement, Ring rule, Isotopic peaks, Interpretation of organic compounds.

4. Chromatography:

12 Hrs

Principle, Instrumentation and Applications of the following:

a) GC-MS b) GC-AAS c) LC-MS d) LC-FTIR e) LC-NMR f) CE- MS g) High Performance Thin Layer chromatography h) Super critical fluid chromatography i) Ion Chromatography j) I-EC (Ion- Exclusion Chromatography) k) Flash chromatography.

5. a). Thermal methods of analysis

12 Hrs

Introduction, principle, instrumentation and application of DSC, DTA and TGA.

- b). Raman Spectroscopy
 - Introduction, Principle, Instrumentation and Applications.
- c). Radio immuno assay

Biological standardization, bioassay, ELISA, Radioimmuno assay of digitalis and insulin.

REFERENCES

- 1. Spectrometric Identification of Organic compounds Robert M Silverstein, Sixth edition, John Wiley & Sons, 2004.
- 2. Principles of Instrumental Analysis Doglas A Skoog, F. James Holler, Timothy A. Nieman, 5th edition, Eastern press, Bangalore, 1998.
- 3. Instrumental methods of analysis Willards, 7th edition, CBS publishers.
- 4. Organic Spectroscopy William Kemp, 3rd edition, ELBS, 1991.
- 5. Quantitative analysis of Pharmaceutical formulations by HPTLC P D Sethi, CBS Publishers, New Delhi.

- 6. Quantitative Analysis of Drugs in Pharmaceutical formulation P D Sethi, 3rd Edition, CBS Publishers, New Delhi, 1997.
- 7. Pharmaceutical Analysis- Modern methods Part B J W Munson, Volume 11 Marcel Dekker Series

ADVANCED ORGANIC CHEMISTRY - II (MPC 202T)

Scope

The subject is designed to provide in-depth knowledge about advances in organic chemistry, different techniques of organic synthesis and their applications to process chemistry as well as drug discovery.

Objectives

Upon completion of course, the student shall able to understand

- The principles and applications of Green chemistry
- The concept of peptide chemistry.
- The various catalysts used in organic reactions
- The concept of stereochemistry and asymmetric synthesis.

THEORY 60 Hrs

1. Green Chemistry:

12 Hrs

- a) Introduction, principles of green chemistry
- b) Microwave assisted reactions: Merit and demerits of its use, increased reaction rates, mechanism, superheating effects of microwave, effects of solvents in microwave assisted synthesis, microwave technology in process optimization, its applications in various organic reactions and heterocycles synthesis
- c) Ultrasound assisted reactions: Types of sonochemical reactions, homogenous, heterogeneous liquid-liquid and liquid-solid reactions, synthetic applications
- d) Continuous flow reactors: Working principle, advantages and synthetic applications.

2. Chemistry of peptides

12 Hrs

- a) Coupling reactions in peptide synthesis
- b) Principles of solid phase peptide synthesis, t-BOC and FMOC protocols, various solid supports and linkers: Activation procedures, peptide bond formation, deprotection and cleavage from resin, low and high HF cleavage protocols, formation of free peptides and peptide amides, purification and case studies, site-specific chemical modifications of peptides
- c) Segment and sequential strategies for solution phase peptide synthesis with any two case studies
- d) Side reactions in peptide synthesis: Deletion peptides, side reactions initiated by proton abstraction, protonation, over- activation and side reactions of individual amino acids.

3. Photochemical Reactions

12 Hrs

Basic principles of photochemical reactions. Photo-oxidation, photo-addition and photo-fragmentation.

Pericyclic reactions

Mechanism, Types of pericyclic reactions such as cyclo addition, electrocyclic reaction and sigmatrophic rearrangement reactions with examples

4. Catalysis: 12 Hrs

- a) Types of catalysis, heterogeneous and homogenous catalysis, advantages and disadvantages
- b) Heterogeneous catalysis preparation, characterization, kinetics, supported catalysts, catalyst deactivation and regeneration, some examples of heterogeneous catalysis used in synthesis of drugs.
- c) Homogenous catalysis, hydrogenation, hydroformylation, hydrocyanation,

Wilkinson's catalysts, chiral ligands and chiral induction, Ziegler-Natta catalysts,

- some examples of homogenous catalysis used in synthesis of drugs
- d) Transition-metal and Organo-catalysis in organic synthesis: Metal- catalyzed reactions
- e) Biocatalysis: Use of enzymes in organic synthesis, immobilized enzymes/cells in organic reaction.
- f) Phase transfer catalysis theory and applications

5. Stereochemistry & Asymmetric Synthesis

12 Hrs

- a) Basic concepts in stereochemistry optical activity, specific rotation, racemates and resolution of racemates, the Cahn, Ingold, Prelog (CIP) sequence rule, meso compounds, pseudo asymmetric centres, axes of symmetry, Fischers D and L notation, cis-trans isomerism, E and Z notation.
- b) Methods of asymmetric synthesis using chiral pool, chiral auxiliaries and catalytic asymmetric synthesis, enantiopure separation and Stereoselective synthesis with examples.

REFERENCES

- 1. "Advanced Organic chemistry, Reaction, mechanisms and structure", J March, John Wiley and sons, New York.
- 2. "Mechanism and structure in organic chemistry", ES Gould, Hold Rinchart and Winston, New York.
- 3. "Organic Chemistry" Clayden, Greeves, Warren and Woihers., Oxford University Press

- 2001. 4. "Organic Chemistry" Vol I and II. I.L. Finar. ELBS, Sixth ed., 1995.
- 4. Carey, Organic chemistry, 5th edition (Viva Books Pvt. Ltd.)
- 5. Organic synthesis-the disconnection approach, S. Warren, Wily India
- 6. Principles of organic synthesis, ROCNorman and JMCoxan, Nelson thorns
- 7. Organic synthesis- Special techniques VK Ahluwalia and R Aggarwal, Narosa Publishers.
- 8. Organic reaction mechanisms IV edn, VK Ahluwalia and RK Parashar, Narosa Publishers.

COMPUTER AIDED DRUG DESIGN (MPC 203T)

Scope

The subject is designed to impart knowledge on the current state of the art techniques involved in computer assisted drug design.

Objectives

At completion of this course it is expected that students will be able to understand

- Role of CADD in drug discovery
- Different CADD techniques and their applications
- Various strategies to design and develop new drug like molecules.
- Working with molecular modeling softwares to design new drug molecules
- The *in silico* virtual screening protocols

Theory 60 Hrs

1. Introduction to Computer Aided Drug Design (CADD)

12 Hrs

History, different techniques and applications.

Quantitative Structure Activity Relationships: Basics History and development of QSAR: Physicochemical parameters and methods to calculate physicochemical parameters: Hammett equation and electronic parameters (sigma), lipophilicity effects and parameters (log P, pi-substituent constant), steric effects (Taft steric and MR parameters) Experimental and theoretical approaches for the determination of these physicochemical parameters.

2. Quantitative Structure Activity Relationships:

12 Hrs

Applications, Hansch analysis, Free Wilson analysis and relationship between them, Advantages and disadvantages. Derivation of 2D-QSAR equations.

3D-QSAR approaches and contour map analysis.

Statistical methods used in QSAR analysis and importance of statistical parameters.

3. Molecular Modeling and Docking

12 Hrs

- a. Molecular and Quantum Mechanics in drug design.
- b. Energy Minimization Methods, comparison between global minimum conformation and bioactive conformation
- c. Molecular docking and drug receptor interactions: Rigid docking, flexible docking and extra-precision docking. Agents acting on enzymes such as DHFR, HMG-CoA reductase and HIV protease, choline esterase (AchE & BchE)

4. Molecular Properties and Drug Design

12 Hrs

- a) Prediction and analysis of ADMET properties of new molecules and its importance in drug design.
- b) De novo drug design: Receptor/enzyme-interaction and its analysis, Receptor/enzyme cavity size prediction, prediction of the functional components of cavities, Fragment

based drug design.

c) Homology modeling and generation of 3D-structure of protein.

5. Pharmacophore Mapping and Virtual Screening

12 Hrs

Concept of pharmacophore, pharmacophore mapping, identification of Pharmacophore features and Pharmacophore modeling; Conformational search used in pharmacophore mapping.

In Silico Drug Design and Virtual Screening Techniques. Similarity based methods and Pharmacophore based screening, structure based *in silico* virtual screening protocols.

REFERENCES

- Computational and structural approaches to drug discovery, Robert M Stroud and Janet. F Moore, RCS Publishers.
- 2. Introduction to Quantitative Drug Design by Y.C. Martin, CRC Press, Taylor & Francis group.
- 3. Drug Design by Ariens Volume 1 to 10, Academic Press, 1975, Elsevier Publishers.
- 4. Principles of Drug Design by Smith and Williams, CRC Press, Taylor & Francis.
- 5. The Organic Chemistry of the Drug Design and Drug action by Richard B. Silverman, Elsevier Publishers.
- 6. Medicinal Chemistry by Burger, Wiley Publishing Co.
- 7. An Introduction to Medicinal Chemistry Graham L. Patrick, Oxford University Press.
- 8. Wilson and Gisvold's Text book of Organic Medicinal and Pharmaceutical Chemistry, Lippincott Williams & Wilkins.
- 9. Comprehensive Medicinal Chemistry Corwin and Hansch, Pergamon Publishers.
- 10. Computational and structural approaches to drug design edited by Robert M Stroud and Janet. F Moore

PHARMACEUTICAL PROCESS CHEMISTRY (MPC 204T)

Scope

Process chemistry is often described as scale up reactions, taking them from small quantities created in the research lab to the larger quantities that are needed for further testing and then to even larger quantities required for commercial production. The goal of a process chemist is to develop synthetic routes that are safe, cost-effective, environmentally friendly, and efficient. The subject is designed to impart knowledge on the development and optimization of a synthetic route/s and the pilot plant procedure for the manufacture of Active Pharmaceutical Ingredients (APIs) and new chemical entities (NCEs) for the drug development phase.

Objectives

At completion of this course it is expected that students will be able to understand

• The strategies of scale up process of apis and intermediates

The various unit operations and various reactions in process chemistry

THEORY 60 Hrs

1. Process chemistry

Introduction, Synthetic strategy

12 Hrs

Stages of scale up process: Bench, pilot and large scale process. In-process control and validation of large scale process. Case studies of some scale up process of APIs. Impurities in API, types and their sources including genotoxic impurities

2. Unit operations 12 Hrs

- a) Extraction: Liquid equilibria, extraction with reflux, extraction with agitation, counter current extraction. b) Filtration: Theory of filtration, pressure and vacuum filtration, centrifugal filtration, c) Distillation: azeotropic and steam distillation
- d) Evaporation: Types of evaporators, factors affecting evaporation. e) Crystallization: Crystallization from aqueous, non- aqueous solutions factors affecting crystallization, nucleation. Principle and general methods of preparation of polymorphs, hydrates, solvates and amorphous APIs.

3. Unit Processes - I 12 Hrs

- 1. Nitration: Nitrating agents, Aromatic nitration, kinetics and mechanism of aromatic nitration, process equipment for technical nitration, mixed acid for nitration,
- 2. Halogenation: Kinetics of halogenations, types of halogenations, catalytic halogenations. Case study on industrial halogenation process.
- 3. Oxidation: Introduction, types of oxidative reactions, Liquid phase oxidation with oxidizing agents. Non-metallic oxidizing agents such as H_2O_2 , sodium hypochlorite, Oxygen gas and ozonolysis.

4. Unit Processes - II 12 Hrs

- a) Reduction: Catalytic hydrogenation, Heterogeneous and homogeneous catalyst; Hydrogen transfer reactions, Metal hydrides. Case study on industrial reduction process.
- b) Fermentation: Aerobic and anaerobic fermentation. Production of
 - i. Antibiotics; Penicillin and Streptomycin,
 - ii. Vitamins: B2 and B12
 - iii. Statins: Lovastatin, Simvastatin
- c) Reaction progress kinetic analysis
 - i. Streamlining reaction steps, route selection,
 - ii. Characteristics of expedient routes, characteristics of cost- effective routes, reagent selection, families of reagents useful for scale-up.

5. Industrial Safety 12 Hrs

a) MSDS (Material Safety Data Sheet), hazard labels of chemicals and Personal

- Protection Equipment (PPE)
- b) Fire hazards, types of fire & fire extinguishers
- c) Occupational Health & Safety Assessment Series 1800 (OHSAS-1800) and ISO-14001(Environmental Management System), Effluents and its management.

REFERENCES

- 1. Process Chemistry in the Pharmaceutical Industry: Challenges in an Ever- Changing Climate-An Overview; K. Gadamasetti, CRC Press.
- 2. Pharmaceutical Manufacturing Encyclopedia, 3rd edition, Volume 2.
- 3. Medicinal Chemistry by Burger, 6th edition, Volume 1-8.
- 4. W.L. McCabe, J.C Smith, Peter Harriott. Unit operations of chemical engineering, 7th edition, McGraw Hill
- 5. Polymorphism in Pharmaceutical Solids .Dekker Series Volume 95 Ed: H G Brittain (1999)
- 6. Regina M. Murphy: Introduction to Chemical Processes: Principles, Analysis, Synthesis
- 7. Peter J. Harrington: Pharmaceutical Process Chemistry for Synthesis: Rethinking the Routes to Scale-Up
- 8. P.H.Groggins: Unit processes in organic synthesis (MGH)
- 9. F.A.Henglein: Chemical Technology (Pergamon)
- 10. M.Gopal: Dryden's Outlines of Chemical Technology, WEP East-West Press
- 11. Clausen, Mattson: Principle of Industrial Chemistry, Wiley Publishing Co.,
- 12. Lowenheim & M.K. Moran: Industrial Chemicals
- 13. S.D. Shukla & G.N. Pandey: A text book of Chemical Technology Vol. II, Vikas Publishing House
- 14. J.K. Stille: Industrial Organic Chemistry (PH)
- 15. Shreve: Chemical Process Mc Grawhill, .
- 16. B.K.Sharma: Industrial Chemistry, Goel Publishing House
- 17. ICH Guidelines
- 18. United States Food and Drug Administration official website www.fda.gov

PHARMACEUTICAL CHEMISTRY PRACTICALS – II (MPC 205P)

- 1. Synthesis of organic compounds by adapting different approaches involving (3 experiments)
 - i. Oxidation
 - ii. Reduction/hydrogenation
 - iii. Nitration
- 2. Comparative study of synthesis of APIs/intermediates by different synthetic routes (2 experiments)

- 3. Assignments on regulatory requirements in API (2 experiments)
- 4. Comparison of absorption spectra by UV and Wood ward Fieser rule
- 5. Interpretation of organic compounds by FT-IR
- 6. Interpretation of organic compounds by NMR
- 7. Interpretation of organic compounds by MS
- 8. Determination of purity by DSC in pharmaceuticals
- 9. Identification of organic compounds using FT-IR, NMR, CNMR and Mass spectra
- 10. To carry out the preparation of following organic compounds
- 11. Preparation of 4-chlorobenzhydrylpiperazine. (an intermediate for cetirizine HCl).
- 12. Preparation of 4-iodotolene from p-toluidine.
- 13. NaBH₄ reduction of vanillin to vanillyl alcohol
- 14. Preparation of umbelliferone by Pechhman reaction
- 15. Preparation of triphenyl imidazole
- 16. To perform the Microwave irradiated reactions of synthetic importance (Any two)
- 17. Determination of log P, MR, hydrogen bond donors and acceptors of selected drugs using softwares
- **18.** Calculation of ADMET properties of drug molecules and its analysis using softwares Pharmacophore modeling
- 19. 2D-QSAR based experiments
- 20. 3D-QSAR based experiments
- 21. Docking study based experiment
- 22. Virtual screening based experiment

RESEARCH METHODOLOGY & BIOSTATISTICS (MRM 301T)

UNIT – I

General Research Methodology: Research, objective, requirements, practical difficulties, types of research, scientific methods of research, types of studies, study design.

Review of literature - Sources of information. Searching of library documents and databases online and offline (Pubmed, Biological abstracts, other databases in pharmaceutical sciences). Introduction to internet searching using advanced search tools.

UNIT - II

Collection and analysis of data: Types of data and data collection techniques, processing of data, coding, tabulation and analysis of data.

Biostatistics: Definition, application, sample size, importance of sample size, factors influencing sample size, dropouts, statistical tests of significance, type of significance tests, parametric tests (Student's t-test, ANOVA, Correlation coefficient, regression), non-parametric tests (Wilcoxan rank tests, analysis of variance, correlation, Chi square test), null hypothesis, P values, degree of freedom, interpretation of P values, different software for statistical analysis.

UNIT – III

Medical Research: History, values in medical ethics, strategies to eliminate errors/bias, controls, randomisation, cross over design, placebo, blinding techniques autonomy, beneficence, non-maleficence, double effect, conflicts between autonomy and beneficence/non-maleficence, euthanasia, informed consent, confidentiality, criticisms of orthodox medical ethics, importance of communication, control resolution, guidelines, ethics committees, cultural concerns, truth telling, online business practices, conflicts of interest, vendor relationships, treatment of family members.

UNIT - IV

CPCSEA guidelines for laboratory animal facility: Goals, location of animal facilities to laboratories, anaesthesia, euthanasia, physical facilities, environment, animal husbandry, record keeping, SOPs, personnel and training, transport of lab animals.

UNIT - V

Technical writing, thesis/research report writing, structure of thesis, editing and formatting, reference citations, abstracting, plagiarism and paraphrasing, tools for writing good research report.

UNIT – VI

Research reporting - poster presentation, seminar and conference presentation, publishing in journals, copyright.

REFERENCES:

Atiya Khanum Irfan Ali Khan , Biostatistics for Pharmacy, 2nd Edition , 2007, Ukaaz Publications, Hyderabad

C. George Thomas . Research Methodology and Scientific Writing First edition, 2016, Ane Books Pvt. Ltd.; New Delhi,

C. R Kothari. Research Methodology: Methods and Techniques. New Age International (P) Ltd, Publishers. New Delhi

Mahajan, B.K. Methods in Biostatistics. For Medical Students and Research workers, 7th edition 2008 Jaypee Brothers

Putul Mahanta, Medical Writing: A Guide for Medicos, Educators and Researchers Jaypee Brothers Medical Publishers; First edition (2018)

Ranjan Das . Biomedical Research Methodology :Iincluding Biostatistical Applications. 1st Edn . Jaypee Brothers

Ranjit Kumar, Research Methodology: A Step-by-Step Guide for Beginners, 3rd Edition 2011, Sage Publications India Pvt. Ltd. , New Delhi

Sharma Suresh.Research Methodology and Biostatistics. A Comprehensive Guide for Health Care Professionals. 1st Edn . Elsevier India

Sunder Rao. P.S.S and Richard, J. An introduction to Biostatistics: A manual for students in health sciences. Prentice-Hall of India Pvt.Ltd Publishers
