CRAFT OF EVIDENCE SYNTHESIS WITH QUANTITATIVE DATA

(META ANALYSIS)

N.Sreekumaran Nair, PhD (IIT, Delhi), FSMS

Professor & Head Department of Biostatistics JIPMER, Puducherry (An Institute of National Importance under Ministry of Health & Family Welfare Government of India)

Statistical Editor, Cochrane Public Health

Outline of the talk

Systematic review and Meta analysis - Basics

Models in meta analysis

Heterogeneity

Subgroup analysis

Publication bias

Caution in the use of meta analysis

Thanks to the Cochrane collaboration especially to the Cochrane community for many of the materials used in this presentation.

Creating Research evidence

Primary research

Secondary data analysis

Narrative reviews

Systematic reviews and meta analysis

Answering a focused research question, based on existing literature with the application of scientific strategies that limit bias to the systematic assembly, critical appraisal, and synthesis of all relevant studies.

Steps in conducting a systematic review

- **STEP 1:** Framing the review question
- **STEP 2:** Writing protocol
- **STEP 3:** Locating and selecting studies
- **STEP 4:** Critical appraisal of studies
- **STEP 5:** Collecting data
- **STEP 6:** Analysing and presenting results
- **STEP 7:** Interpreting results
- **STEP 8:** Writing & publishing review

Step 9: Writing evidence summary and Policy brief

Meta analysis - summarising effects across studies

'The statistical analysis of a large collection of analysis results from individual studies for the purpose of integrating the findings'

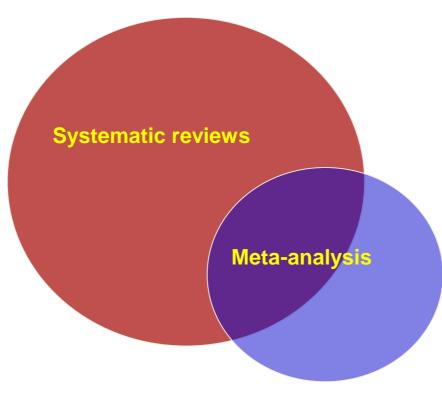
Glass GV. Primary, Secondary and meta analysis of research. Educ rese ; 1976;5:3-8

Efficacy of Azithromycin in comparison with Amoxicillin for acute lower respiratory tract infection

Study	OR	95% CI
Study 1	0.64	0.14 – 2.65
Study 2	16.6	3.52 – 107.5
Study 3	0.46	0.30 – 0.71
Study 4	1.42	0.40 – 5.57
Study 5	0.66	0.17 – 2.53
Pooled	0.66	0.46 – 0.96

Meta analysis- Forest plot

Review: Azithromycin for acute lower respiratory tract infection


Comparison: 01 Azithromycin vs Amoxycilin

Outcome: 02 Clinical failure

Study or sub-category	log[OR] (SE)	OR (fixed) 95% Cl	Weight %	OR (fixed) 95% Cl
Balmes-1991	-0.4500 (0.6633)		7.77	0.64 [0.17, 2.34]
Beghi-1995	2.8100 (0.7616)		5.89	16.61 [3.73, 73.90]
Bicbuyck -1996	-0.7800 (0.2236)		68.35	0.46 [0.30, 0.71]
Harris-1998	0.3500 (0.6083)	_ _	9.23	1.42 [0.43, 4.68]
Ferwerda-2001	-0.4200 (0.6245)	-	8.76	0.66 [0.19, 2.23]
Total (95% Cl) Test for heterogeneity: Ch Test for overall effect: Z :	ni² = 22.18, df = 4 (P = 0.0002), l² = 82.0% = 2.20 (P = 0.03)	•	100.00	0.67 [0.46, 0.96]
			,)0 1000	
	Favours	treatment Favours con	trol	
	Craft of	quantitative eviden	ce synthesis	

Systematic review and Meta analysis

Optional part of a systematic review

Method of meta analysis – Fixed effect model (one source of variation)

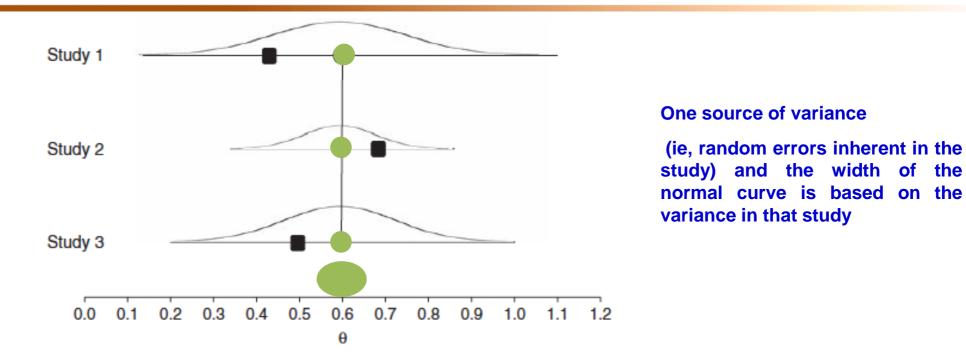


Figure 11.3 Fixed-effect model – distribution of sampling error.

More generally, the observed effect *Yi* for any study is given by the population mean plus the sampling error in that study.

 $Y_i = \theta + \varepsilon_i$

Azithromycin for acute lower respiratory tract infection

Azithroi	Azithromycin		cillin	OR
Total	Events*	Total	Events*	
48	4	56	7	0.64
69	22	73	2	16.6
497	53	257	53	0.46
125	11	63	4	1.42
55	5	53	7	0.66
	Total 48 69 497 125	Total Events* 48 4 69 22 497 53 125 11	Total Events* Total 48 4 56 69 22 73 497 53 257 125 11 63	Total Events* Total Events* 48 4 56 7 69 22 73 2 497 53 257 53 125 11 63 4

* Clinical failure

Pooled 0.66 (0.46 - 0.96)

Variance estimate & Weight

Study 1	Clinical failure	No event	Total
Azithro	4	44	48
Amoxy	7	49	56
Total	11	93	104

Variance of In(OR) = 1/a + 1/b + 1/c + 1/d= 1/4 + 1/44 + 1/7 + 1/49= 0.25 + 0.023 + 0.143 + 0.020 = 0

= 0.25 + 0.023 + 0.143 + 0.020 = 0.436

Weight	= In	verse variance
W _i	=	$1/V_i = 1/0.44 = 2.27$

Azithromycin for acute lower respiratory tract infection

Study	OR	In OR	Var	Weight	
		уу	V	W	%
Study 1	0.64	-0.45	0.44	2.27	7.76
•	16.6	-0.45	0.58	1.72	5.88
Study 2					
Study 3	0.46	-0.78	0.05	20.0	68.4
Study 4	1.42	0.35	0.37	2.70	9.23
Study 5	0.66	-0.42	0.39	2.56	8.75
Total				29.25	100

Pooled effect measures

Results for log odds ratios

M =
$$\Sigma(wy) / \Sigma w = -11.92 / 29.25 = -0.41$$

SE (M) = 1 / $\sqrt{\Sigma}w = 1 / \sqrt{29.25} = 0.19$

95% C.I. = $M \pm 1.96 \text{ SE}(M) = -0.78 \text{ to } -0.04$

Results in odds ratio scale

١

Pooled OR = Exp(M) = Exp(-0.41) = 0.6795 % Cl = Exp(-0.78) to Exp(-0.04)= 0.46 to 0.96

Meta analysis- Forest plot

Review: Azithromycin for acute lower respiratory tract infection

Comparison: 01 Azithromycin vs Amoxycilin

Outcome: 02 Clinical failure

Study or sub-category	log[OR] (SE)	OR (fixed) 95% Cl	Weight %	OR (fixed) 95% Cl
Balmes-1991	-0.4500 (0.6633)		7.77	0.64 [0.17, 2.34]
Beghi-1995	2.8100 (0.7616)		5.89	16.61 [3.73, 73.90]
Bicbuyck -1996	-0.7800 (0.2236)	-	68.35	0.46 [0.30, 0.71]
Harris-1998	0.3500 (0.6083)		9.23	1.42 [0.43, 4.68]
Ferwerda-2001	-0.4200 (0.6245)		8.76	0.66 [0.19, 2.23]
Total (95% Cl) Test for heterogeneity: Ch Test for overall effect: Z :	ni² = 22.18, df = 4 (P = 0.0002), l² = 82.0% = 2.20 (P = 0.03)	•	100.00	0.67 [0.46, 0.96]
	0.001 0.01		, , , , , , , , , , , , , , , , , , ,	
	Favours	streatment Favours cor	itrol	
	Craft of	quantitative eviden	ce synthesis	

Method of meta analysis- Random-effects Model – Two Sources of Variance

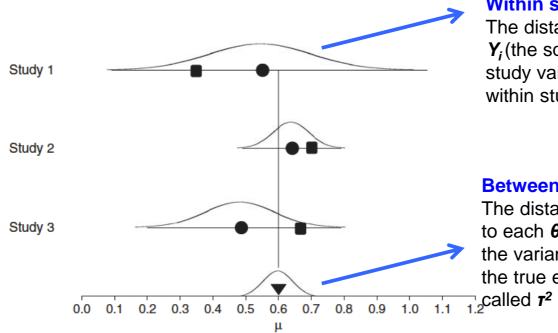


Figure 12.4 Random-effects model - between-study and within-study variance.

$$\chi_i = \mu + \zeta_i + \varepsilon_i$$

Within studies variance:

The distance from θ_i (the circles) to Y_i (the square) depends on within study variance (ie., random errors within study) V_{γ_i}

Between studies variance:

The distance from μ (the triangle) to each θ_i (the circles) depends on the variance of the distribution of the true effects across studies,

	True effect	Observed effect
Study	•	
Combined	•	•

Performing a Random-effects Meta-analysis

Start with the observed effects and try to estimate the population effect through computing a weighted mean.

Weight assigned to each study in a random-effects meta-analysis is

$$W_{i}^{*} = \frac{1}{V_{Y_{i}}^{*}}$$

$$V_{Y_{i}}^{*} = V_{Y_{i}} + T^{2}$$
is the within studies variance for study *i* plus the estimate of between studies variance T^{2}

- Weighted mean (*M**): $M^* = \frac{\sum Y_i W_i^*}{\sum W_i^*}$
- Variance of the summary effect (V_{M^*}) : $V_{M^*} = \frac{1}{\sum W_i^*}$
- Standard error of the summary effect (SE_{M^*}): $SE_{M^*} = \sqrt{V_{M^*}}$

Review:Azithromycin for acute lower respiratory tract infectionComparison:01 Azithromycin vs AmoxycilinOutcome:02 Clinical failure

Study or sub-category	log[OR] (SE)	OR (random) 95% Cl	Weight %	OR (random) 95% Cl
Balmes-1991	-0.4500 (0.6633)	_	18.86	0.64 [0.17, 2.34]
Beghi-1995	2.8100 (0.7616)		17.39	16.61 [3.73, 73.90]
Bicbuyck -1996	-0.7800 (0.2236)	+	24.63	0.46 [0.30, 0.71]
Harris-1998	0.3500 (0.6083)		19.68	1.42 [0.43, 4.68]
Ferwerda-2001	-0.4200 (0.6245)		19.44	0.66 [0.19, 2.23]
Total (95% Cl)		•	100.00	1.22 [0.41, 3.66]
Test for heterogeneity: Ch Test for overall effect: Z =	i² = 22.18, df = 4 (P = 0.0002), l² = 82.0% : 0.36 (P = 0.72)	ſ		
	· · · 0.001 0.0 [,]	· · · · ·	 DO 1000	
	Favoura	streatment Favours con	trol	

Review: Azithromycin for acute lower respiratory tract infection Comparison: 01 Azithromycin vs Amoxycilin

Outcome: 02 Clinical failure

Study or sub-category	log[OR] (SE)	OR (fixed) 95% Cl	Weight %	OR (fixed) 95% Cl			
Balmes-1991 Beghi-1995 Bicbuyck -1996 Harris-1998 Ferwerda-2001	-0.4500 (0.6633) 2.8100 (0.7616) -0.7800 (0.2236) 0.3500 (0.6083) -0.4200 (0.6245)		7.77 5.89 68.35 9.23 8.76	0.64 [0.17, 2.34] 16.61 [3.73, 73.90] 0.46 [0.30, 0.71] 1.42 [0.43, 4.68] 0.66 [0.19, 2.23]			
otal (95% CI) iest for heterogeneity: Ch iest for overall effect: Z =			100.00	0.67 [0.46, 0.96]			
	0.001 (Favo	.01 0.1 1 10 10 urstreatment Favourscon	00 1000 ttrol Study or sub-category	log(OR) (SE)	OR (random) 95% Cl	Weight %	OR (random) 95% Cl
			Balmes-1991 Beghi-1995 Bicbuyck -1996 Harris-1998 Ferwerda-2001	0.3500 (0.6083)	* * *	18.86 17.39 24.63 19.68 19.44	0.64 [0.17, 2.34] 16.61 [3.73, 73.90] 0.46 [0.30, 0.71] 1.42 [0.43, 4.68] 0.66 [0.19, 2.23]
			-	:neity: Chi² = 22.18, df = 4 (P = 0.0002), l² = 82.0% ffect: Z = 0.36 (P = 0.72)	+	100.00	1.22 (0.41, 3.66)
				0.001 0	.01 0.1 1 10 100	1000	
				Favo	urs treatment Favours contr	ol	

Clinical heterogeneity

Population Dose Materials Inclusion & exclusion criteria

Subgroup analysis

Methodological heterogeneity

> Study design: Case control, Cohort , RCT, Cluster RCT & N-RCT

Subgroup analysis

Statistical heterogeneity

More variation between results of studies than would be expected by chance

Treat statistically using appropriate models

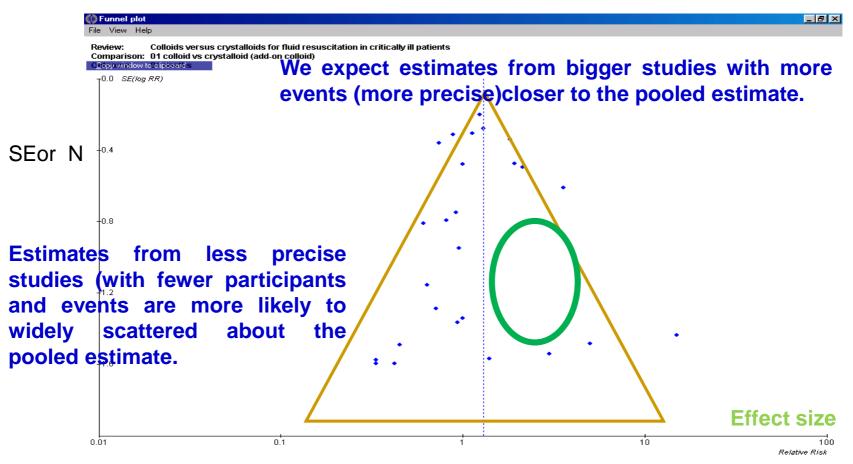
More variation between results of studies than would be expected by chance

lack of overlap in confidence interval indicate heterogeneity

Statistical tests

Q statistics, I^2 statistic, r^2

Note of caution


With very few studies, statistical test has low power to detect important heterogeneity

With large number of studies, statistical test has excessive power to detect clinically unimportant heterogeneity

Review:Azithromycin for acute lower respiratory tract infectionComparison:01 Azithromycin vs AmoxycilinOutcome:02 Clinical failure

Study or sub-category	log[OR] (SE)	OR (random) 95% Cl	Weight %	OR (random) 95% Cl
Balmes-1991	-0.4500 (0.6633)	_ _	18.86	0.64 [0.17, 2.34]
Beghi-1995	2.8100 (0.7616)		17.39	16.61 [3.73, 73.90]
Bicbuyck -1996	-0.7800 (0.2236)	+	24.63	0.46 [0.30, 0.71]
Harris-1998	0.3500 (0.6083)		19.68	1.42 [0.43, 4.68]
Ferwerda-2001	-0.4200 (0.6245)		19.44	0.66 [0.19, 2.23]
Total (95% Cl)		•	100.00	1.22 [0.41, 3.66]
Test for heterogeneity: Ch	ii² = 22.18, df = 4 (P = 0.0002), l² = 82.0%	T		- , -
Test for overall effect: Z =	= 0.36 (P = 0.72)			
	, , 0.001 0.0'	, <u> </u>	, 10 1000	
	0.001 0.0		JU 1000	
	Favours	s treatment Favours con	trol	

Detecting publication bias - the funnel plot

In the absence of bias, this should produce a triangular shape, an inverted funnel, and we would expect the funnel to be symmetrical

Other topics in meta analysis

Network meta analysis

Meta regression

Bayesian meta analysis

Multivariate meta analysis

Meta analysis of complex interventions

Caution in the use of meta analysis

Search should be complete, unbiased and studies selected with robust inclusion/exclusion criteria

Studies must address same question and possibly get the same effect measures

Clinical and methodological homogeneity should be guaranteed

GIGO

Effect measure of combination of biased studies will much more dangerous than a single biased study.

