

What is new in COVID-19 research?

Shyam Kottilil MD, Ph.D., FIDSA, MACP

Professor of Medicine Director, Division of Clinical Care and Research Chief, Division of Infectious Diseases Institute of Human Virology University of Maryland Baltimore, MD

COVID-19 in 2022

- Viral evolution
- **Treatment update**
- Vaccination update
- Natural history of COVID-19
- Lesson learned for future

COVID-19 in 2022

Viral evolution

- Treatment update
- Vaccination update
- Natural history of COVID-19
- Lesson learned for future

SARS-CoV-2 Virion and Structural Proteins

Coronaviruses belong in the family *Coronaviridae* and can cause disease in mammals and birds. The coronavirus spike (S) protein mediates membrane fusion by binding to cellular receptors. Human coronavirus spike protein

Evolution of SARS-CoV-2 Variants

Table 1 SARS-CoV-2 variants and related spike protein mutations							
WHO nomenclature or designation	Pango lineage	Spike protein mutations of interest	First detected samples*				
Variants of concern							
Alpha	B.1.1.7	N501Y. D614G, P681H	UK, September 2020				
Beta	B.1.351	N501Y. D614G, E484K, K417N, A701V	South Africa, May 2020				
Gamma	P.1	N501Y, D614G, E484K, K417T, H655Y	Brazil, November 2020				
Delta	B.1.617.2	L452R, D614G, P681R, T478K	India, October 2020				
Omicron	B.1.1.529	N501Y, D614G, E484A, P681H, K417N, H655Y, A67V, Δ69-70, T95I, G142D, Δ143-145, N211I, Δ212, ins215EPE, G339D, S371L, S373P, S375F, N440K, G446S, S477N, T478K, Q493R, G496S, Q498R, Y505H, T547K, N679K, N764K, D796Y, N856K, Q954H, N969K, L981F	South Africa and Botswa- na, November 2021				
Variants of interest							
Lambda	C.37	L452Q, D614G, F490S	Peru, December 2020				
Mu	B.1.621	N501Y, D614G, P681H, R346K, E484K	Columbia, January 2021				
Variants under monitoring							
Not assigned	B.1.1.318	D614G, P681H, E484K	Multiple countries, Janu- ary 2021				
Not assigned	C.1.2	N501Y, D614G, E484K, H655Y, N679K, Y449H	South Africa, May 2021				
Not assigned	B.1.640	N501Y, D614G, P681H, F490R, N394S, R346S, Y449N, 137-145del	Multiple countries, Sep- tember 2021				
Information correct as of 24 Jan *First detection worldwide.	uary 2022.						

Mutational Capability of RNA Viruses

RNA = ribonucleic acid; DNA = deoxyribonucleic acid; ssDNA = single-stranded DNA; dsDNA = double-stranded DNA.

Viral Mutations and Emergence of Resistance

Resistance-associated substitution (RAS) Fitness-associated substitution

Catalogue of SARS-CoV-2 Mutations

Callaway E. Nature. 2020;585:174-177.

Rapid Spread of D614G Mutation

COVID-19 in 2022

Viral evolution

- Treatment update
- Vaccination update
- Natural history of COVID-19
- Lesson learned for future

Therapy for COVID-19

	Asymptomatic or presymptomatic	Mild illness	Moderate illness	Severe illness	Critical illness
Features	Positive SARS-CoV-2 test; no symptoms Change in taste or smell); no dyspnea		Clinical or radiographic evidence of lower respiratory tract disease; oxygen saturation ≥94%	Oxygen saturation <94% respiratory rate ≥30 breaths/min; lung infiltrates >50%	Respiratory failure, shock, and multiorgan dysfunction or failure
Testing	Screening testing; if patient Diagnostic testing has known exposure, diagnostic testing		Diagnostic testing	Diagnostic testing	Diagnostic testing
Isolation	Yes	Yes	Yes	Yes	Yes
Proposed disease pathogenesis		Viral			
			Inflammation		
Potential treatment		Antiviral thera			
		Antibody therapy	Antiinflammatory therapy		
Management considerations	Monitoring for symptoms	Clinical monitoring and supportive care	Clinical monitoring; if patient hospitalized and at high risk for deterioration, possibly remdesivir	Hospitalization, oxygen therapy, and specific therapy (remdesivir, dexamethasone)	Critical care and specific therapy (dexamethasone, possibly remdesivir)

Treatment Paradigm for COVID-19

Heil E and Kottilil S. NEJM 2022

COVID-19 in 2022

- Viral evolution
- Treatment update
- Vaccination update
- Natural history of COVID-19
- Lesson learned for future

Vaccine Development

mRNA Vaccine

Pardi N et al. Nature Drug Discovery, 2018, 17: 261

Bivalent mRNA vaccines

Wang J. Nature 2021

Vaccines Do Work

- US CDC study evaluated 192,509 hospitalizations in 250 hospitals (Jan 2021 to April 2022)
- Risk of hospitalization over vaccinated and boosted
 - Unvaccinated 10.5 times more
 - Vaccinated, but not boosted 2.5 X more
- Older (70+, 3 or more underlying factors, nursing home residents)

COVID-19 in 2022

- Viral evolution
- Treatment update
- Vaccination update
- Natural history of COVID-19
- Lesson learned for future

Natural History of Recent Pandemics

Telenti et al. Nature 2021

Antigenic Drift

Telenti et al. Nature 2021

Adaption by Cross Species Transmission

Telenti et al. Nature 2021

Long COVID-19

Crook H et al. BMJ, 2021

Long COVID-19

- People with post-COVID conditions can have a wide range of symptoms that can last more than four weeks or even months after infection (13.3% and 2.5% after 3 months)
- Symptoms cannot be explained by tests or other causes
- Who gets it?
 - Severe COVID-19/ICU stay (30% at 6 months after discharge)
 - Unvaccinated who get COVID
 - Have Multisystem Inflammatory Syndrome with COVID

Long COVID-19 Symptoms

Symptoms

- Fatigue with exertion
- Fever
- SOB, Cough, Chest pain
- Brain fog
- Headaches
- Dizziness
- Change in taste and smell
- Anxiety/depression

- Diarrhea
- Abdominal pain
- Myalgias
- Menstrual cycle changes

COVID-19 in 2022

- Viral evolution
- Treatment update
- Vaccination update
- Natural history of COVID-19
- Lesson learned for future

Closeness of Viruses that have Caused a Pandemic

Behl A et al. Infection, Genetics and Evolution 2022

Pandemic Potential Based on Virology

Behl A et al. Infection, Genetics and Evolution 2022

What future holds?

- It will happen again
- Immediate measures
- Challenges

Factors Enhancing Risk of Pandemic

Non-specific Effects of Oral Polio Vaccine

- Oral Polio Vaccine developed by Albert Sabin (1955)
 - Large-scale clinical trials in USSR (1958-1959)
- 1959- Outbreak in Singapore caused by type 1 poliovirus was stopped by monovalent type 2 OPV
- OPV was used during 1975 outbreak of poliomyelitis-like disease in Bulgaria caused by Enterovirus 71
- Systematic studies of non-specific effects of OPV by Dr. Marina Voroshilova in Russia (1960s and 1970s)
- Recent studies in Denmark, Guinea-Bissau, Finland, Bangladesh (P. Aaby, C. Benn, W. Petri, and others)

Potential Use of Nonpathogenic Enteroviruses for Control of Human Disease

Marina K. Voroshilova¹

Institute of Poliomyelitis and Viral Encephalitides, Academy of Medical Science, Moscow, USSR

Журнал Микробиологии, Эпидемилогии, и Иммунологии 1992 (11-12) : 37-40.

М. П. Чумаков, М. К. Ворошилова. А. С. Анцупова, В. М. Бойко, М. И. Блинова, Л. С. Приймяги, В. И. Родин, В. Б. Сейбиль. К.М. Синяк, А. Ан. Смородинцев, В.А. Степанчук, С. Н. Терехов, Л. И. Трофимова, П. М. Чумаков

ЖИВЫЕ ЭНТЕРОВИРУСНЫЕ ВАКЦИНЫ ДЛЯ ЭКСТРЕННОЙ ПРОФИЛАКТИКИ МАССОВЫХ РЕСПИРАТОРНЫХ ЗАБОЛЕВАНИЙ ВО ВРЕМЯ ОСЕННЕ-ЗИМНЕЙ ЭПИДЕМИИ ГРИППА И ОСТРЫХ РЕСПИРАТОРНЫХ ЗАБОЛЕВАНИЙ

Институт полиомиелита и вирусных энцефалитов Российской АМН, Москва

City Veen Veening	Individuals under study			% of disease cases		Morbidity	Number of
Cny, year, vaccine	Control	Vaccinated	All together	Control	Vaccinated	fold	individuals
Tallinn (1970) OPV1	2,984	7,560	10,544	26.41	5.81	4.5	1,558
Gorky (1970) mOPV1 + mOPV3	18,880	40,673	59,558	28.9	15.5	1.9	5,451
Balashikha (1970) mOPV1 + mOPV3	2,066	2,744	4,819	20.2	7	2.9	363
Vnukovo (1970) mOPV1 + mOPV3	1,994	9,083	11,077	64.9	11.2	5.8	4,878
Total:	25,924	60,965	85,989	-	-	3.8*	12,250

* Morbidity reduction, mean

City Voor Vooring	Individuals under study			% of disease cases		Morbidity	Number of
City, Teal, Vaccine	Control	vaccinated	All together	control	vaccinated	fold	individuals
Tallinn (1970) mOPV1 + ECHO12	1,344	649	1,993	7.6	3.8	2	76
Khabarovsk (1969) ECHO1	12,179	16,454	28,624	6.33	1.45	4.4	802
Khabarovsk (1970) ECHO1 + ECHO12	716	2,733	3,449	50.98	18.23	2.8	892
Khabarovsk (1971) ECHO1 + ECHO12	1,006	942	1,948	17.59	8.7	2	105
Khabarovsk (1971) ECHO1 + ECHO12	343	1,243	1,586	18.37	9.89	1.9	105
Total:	15,579	22,021	37,600	-	-	2.62*	2,059

* Morbidity reduction, mean

Potential for Prevention of Future Pandemics

Chumakov K....Kottilil S. PNAS 2021

Potential for Prevention of Future Pandemics

Chumakov K....Kottilil S. PNAS 2021

Viral Targets

Bergmann, C. and Silverman, R.H. Cleveland Clinic Journal of Medicine (2020)

Convalescent Plasma Therapy

David Spach Univ of Washington

Illustration: David H. Spach, MD

Neutralizing Monoclonal Antibodies

Advantages of Monoclonal over Polyclonal Therapies

- Small Changes in antigen: Single nucleotide polymorphisms/variants (too small to generate a robust antibody response using convalescent plasma)
- Post translational modifications of target (phosphorylation, methylation, etc)
- Since polyclonal response in individuals vary significantly, this approach raises regulatory concerns due to batch to batch variability and variations in performance/outcomes
- Cross-reactivity and adverse events such as hypersensitivity reactions and rarely target organ damage

Yin and Yang of Antibody Therapy

* Structure is solved but not released; * Both sotrovimab and ABBV-47D11 bind to the N-glycan on Asn343, which adopts different conformations and is shown as ACE2, human angiotensin converting enzyme 2; mAb, monoclonal antibody; RBD, receptor binding domain (BRIGHT RED).

Illustration adopted from AbbVie Inc. Confidential Data

INSTITUTE OF HUMAN VIROLOGY

Summary Points

- It is likely that another pandemic will emerge in the future, although when and where is unpredictable
 - Early time is the most critical time
- Dissemination of "fake news" is rampant. Research into public behavior is critical
 - Small studies are not generalizable
 - Guidance can change over time
 - It is a time for us to be humble not play heroes

SCIENCE

FRIDAY, MAY 30, 1919

CONTENTS

The	Lessons	; of	the	Pandemic:	Major	George	
А.	SOPER	• • • •	• • • •		• • • • • • •	• • • • • • •	501

The Freas System: DR. W. L. ESTABROOKE ... 506

Organization Meeting of the American Section of the Proposed International Astronomical Union: PROFESSOR JOEL STEBBINS 508

Scientific Events:---

War Researches at St. Andrews University; The Department of Bacteriology and Public Health at Yale University; Base Hospital, No. 21, of the Washington University School of Medicine. The Chemical Warfare

THE LESSONS OF THE PANDEMIC

THE pandemic which has just swept round the earth has been without precedent. There have been more deadly epidemics, but they have been more circumscribed; there have been epidemics almost as widespread, but they have been less deadly. Floods, famines, earthquakes and volcanic eruptions have all written their stories in terms of human destruction almost too terrible for comprehension, yet never before has there been a catastrophe at once so sudden, so devastating and so universal.

The most astonishing thing about the pandemic was the complete mystery which surrounded it. Nobody seemed to know what vention: First, public indifference. People do not appreciate the risks they run. • •

The great a .1

The measures which were introduced for the control of the pandemic were based upon the slenderest of theories. It was assumed

the present time. Nobody can now speak authoritatively upon this subject. When all

The second factor which stands in the way of prevention is the personal character of the neasures which must be employed. The

scarlet fever. Influenza is in this class. The symptoms at the beginning may be identical with those of the common cold and the true nature of the disease escape notice until the patient shows unmistakable and alarming symptoms. By that time other persons may be infected.

It does not lie in human nature for a man who thinks he has only a slight cold to shut himself up in rigid isolation as a means of protecting others on the bare chance that his cold may turn out to be a really dangerous infection.

Third, the highly infectious nature of the respiratory infections adds to the difficulty of their control. The period of incubation varies

Will there be another visitation? Nobody can positively answer this question. Influenza commonly sweeps in more than one wave over a country. America experienced an unmistakable, but mild, wave before the great one of September and October and since then there have been local disturbances corresponding to fresh outbreaks in many places. In England a new and alarming prevalence has been reported. It would not be surprising if there should be another pandemic in the United States.